Drilling Engineering Course in Rawalpindi, islamabad, Pakistan. 0321-4278510, 0331-9370215

Drilling Engineering Course 0331-9370215, 0321-4278510

Drilling Engineering course in Rawalpindi, Islamabad, Pakistan. Drilling course in Rawalpindi, Islamabad, Pakistan. Drilling Engineering diploma course in Rawalpindi, Islamabad, Pakistan. Petroleum Drilling Engineering course in Rawalpindi, Islamabad, Pakistan. Oil and Gas Drilling Engineering course in Rawalpindi, Islamabad, Pakistan. 0331-9370215, 0321-4278510

Students from different cities can apply for Admission

Rawalpindi, Islamabad, Lahore, Karachi, Gilgit, Skardu, Ghangche, taxila, Shigar, Astore, Diamer, Ghizer, Kharmang, Gultari, Rondo, Hunza Nagar, Gupi, Azad Jammu and Kashmir, Muzaffarabad, Mirpur, Bhimber, Kotli, Rawlakot, Bagh, Bahawalpur, Bhakkar, Chakwal, Chiniot, Dera Ghazi Khan, Faisalabad, Gujranwala, Gujrat, Hafizabad, Jhang, Jhelum, Kasur, Khanewal, Khushab, Layyah, Lodharan, Mandi-Bahuddin, Mianwali, Multan, Muzaffargarh, Nankana Sahib, Narowal, Okara, Pakpattan, Rahim Yar Khan, Rajanpur, Sahiwal, Sargodha, Sheikhupura, Sialkot, Toba tek Singh, Vehari, Attock, Taxila, Wah Cantt, Rawalpindi, Balochistan, Khyber-Pakhtunkhwa, Punjab, Sindh, Gilgit Baltistan, Turbat, Sibi, Chaman, Lasbela, Zhob, Gwadar, Nasiraba, Jaffarabad, Hub, Dera Murad Jamali, Dera Allah Yar, Khyber-Pakhtunkhwa, Peshawar, Mardan, Abbottabad, Mingor, Kohat, Bannu, Swabi, Dera Ismail Khan, Charsadda, Nowshera, Mansehra, Hyderabad, Sukkur, Larkana, Nawabshah, Nanak wara, Mirpur Khas, Jacobabad, Shikarpur, Khairpur, Pakistan.

Drilling Engineering

Drilling engineering is a subset of petroleum engineering. Drilling engineers design and implement procedures to drill wells as safely and economically as possible. They work closely with the drilling contractor, service contractors, and compliance personnel, as well as with geologists and other technical specialists. The drilling engineer has the responsibility for ensuring that costs are minimized while getting information to evaluate the formations penetrated, protecting the health and safety of workers and other personnel, and protecting the environment. The planning phases involved in drilling an oil or gas well typically involve estimating the value of sought reserves, estimating the costs to access reserves, acquiring property by a mineral lease, a geological survey, a well bore plan, and a layout of the type of equipment required to reach the depth of the well. Drilling engineers are in charge of the process of planning and drilling the wells. Their responsibilities include, Designing well programs (e.g., casing sizes and setting depths) to prevent blowouts (uncontrolled well-fluid release) while allowing adequate formation evaluation. Designing or contributing to the design of casing strings and cementing plans, directional drilling plans, drilling fluids programs, and drill string and drill bit programs. Specifying equipment, material and ratings and grades to be used in the drilling process. Providing technical support and audit during the drilling process. Performing cost estimates and analysis. Developing contracts with vendors. Drilling engineers are often degreed as petroleum engineers, although they may come from other technical disciplines (e.g., mechanical engineering or geology) and subsequently be trained by an oil and gas company. They also may have practical experience as a rig hand or mudlogger or mud engineer.

Well Logging

Well logging, also known as borehole logging is the practice of making a detailed record (a well log) of the geologic formations penetrated by a borehole. The log may be based either on visual inspection of samples brought to the surface (geological logs) or on physical measurements made by instruments lowered into the hole (geophysical logs). Some types of geophysical well logs can be done during any phase of a well's history: drilling, completing, producing, or abandoning. Well logging is performed in boreholes drilled for the oil and gas, groundwater, mineral and geothermal exploration, as well as part of environmental and geotechnical studies. The oil and gas industry uses wireline logging to obtain a continuous record of a formation's rock properties. Wireline logging can be defined as being "The acquisition and analysis of geophysical data performed as a function of well bore depth, together with the provision of related services." Note that "wireline logging" and "mud logging" are not the same, yet are closely linked through the integration of the data sets. The measurements are made referenced to "TAH" - True Along Hole depth: these and the associated analysis can then be used to infer further properties, such as hydrocarbon saturation and formation pressure, and to make further drilling and production decisions.

Mud Logging

Mud logging is the creation of a detailed record (well log) of a borehole by examining the cuttings of rock brought to the surface by the circulating drilling medium (most commonly drilling mud). Mud logging is usually performed by a third-party mud logging company. This provides well owners and producers with information about the lithology and fluid content of the borehole while drilling. Historically it is the earliest type of well log. Under some circumstances compressed air is employed as a circulating fluid, rather than mud. Although most commonly used in petroleum exploration, mud logging is also sometimes used when drilling water wells and in other mineral exploration, where drilling fluid is the circulating medium used to lift cuttings out of the hole. In hydrocarbon exploration, hydrocarbon surface gas detectors record the level of natural gas brought up in the mud. A mobile laboratory is situated by the mud logging company near the drilling rig or on deck of an offshore drilling rig, or on a drill ship.

Measurement while Drilling

A drilling rig is used to create borehole or wells (also called a wellbore) in the earth's sub-surface, for example in order to extract natural resources such as gas or oil. During such drilling, data is acquired from the drilling rig sensors for a range of purposes such as: decision-support to monitor and manage the smooth operation of drilling; to make detailed records (or well log) of the geologic formations penetrated by a borehole; to generate operations statistics and performance benchmarks such that improvements can be identified, and to provide well planners with accurate historical operations-performance data with which to perform statistical risk analysis for future well operations. The terms Measurement While Drilling (MWD), and Logging While Drilling (LWD) are not used consistently throughout the industry. Although, these terms are related, within the context of this section, the term MWD refers to directional-drilling measurements, e.g., for decision support for the smooth operation of the drilling, while LWD refers to measurements concerning the geological formation made while drilling.

Logging while Drilling

Logging while drilling (LWD) is a technique of conveying well logging tools into the well borehole downhole as part of the bottom hole assembly (BHA). LWD tools work with its measurement while drilling (MWD) system to transmit partial or complete measurement results to the surface via typically a drilling mud pulser or other improved techniques, while LWD tools are still in the borehole, which is called "real-time data". Complete measurement results can be downloaded from LWD tools after they are pulled out of hole, which is called "memory data". LWD, while sometimes risky and expensive, has the advantage of measuring properties of a formation before drilling fluids invade deeply. Further, many wellbores prove to be difficult or even impossible to measure with conventional wireline tools, especially highly deviated wells. In these situations, the LWD measurement ensures that some measurement of the subsurface is captured in the event that wireline operations are not possible. Timely LWD data can also be used to guide well placement so that the wellbore remains within the zone of interest or in the most productive portion of a reservoir, such as in highly variable shale reservoirs. LWD technology was developed originally as an enhancement to the earlier MWD technology to completely or partially replace wireline logging operation. With the improvement of the technology in the past decades, LWD is now widely used for drilling (including geosteering), and formation evaluation (especially for real time and high angle wells).

Geosteering

Geosteering is the intentional directional control of a wellbore based on the results of downhole geological logging measurements rather than three-dimensional targets in space, usually to keep a directional wellbore within a pay zone. In mature areas, geosteering may be used to keep a wellbore in a particular section of a reservoir to minimize gas or water breakthrough and maximize economic production from the well. In the process of drilling a borehole, geosteering is the act of adjusting the borehole position (inclination and azimuth angles) on the fly to reach one or more geological targets. These changes are based on geological information gathered while drilling.

Drilling Engineering Course in Rawalpindi, Islamabad, Pakistan. 0321-4278510, 0331-9370215

Drilling Engineering Course Content:

  • Drilling Fluids and Hydraulics
  • Casing and Cementing
  • Bit Technology
  • Bit Technology
  • Drill String Basics
  • Directional Drilling
  • Stuck Pipe
  • Well Control
  • Cost Analysis
  • Technical Writing
  • Class

    5 Days a Weeks Class Timing

    Evening & Morning Shift


    Drilling Engineering Diploma Course in Rawalpindi, Islamabad, Pakistan. 0331-9370215, 0321-4278510